Jacobi迭代法的MATLAB实现

Jacobi迭代法求解方程组Ax=b

原理

A = D - L - U

迭代公式:x(k+1) = D-1( L + U ) x(k) + D-1 b

MATLAB实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function [result,i,errory] = Jacobi(A,b,x0)
% Jacobi(A,b,x0) Jacobi迭代法MATLAB实现
% 输入参数:矩阵A b 初值x0
% 输出参数:计算结果x,迭代次数cnt
sizeA = size(A);
if sizeA(1) ~= sizeA(2)
error('A不是方阵');
end
e = 1e-4;
i = 1;
D = diag(diag(A));
L = D - tril(A);
U = D - triu(A);
x1 = x0;
x2 = D \ (L + U) * x1 + invD * b;
errory(i) = norm(x2 - x1,inf);
while (norm(x2 - x1,inf) > e)
x1 = x2;
x2 = invD * (L + U) * x1 + D \ b;
i = i + 1;
errory(i) = norm(x2 - x1,inf);
end
result = x2;
errory(i + 1) = norm(x2 - x1,1);
%% 收敛速度
errorx = 0:1:i;
errory = exp(errory);
figure
semilogy(errorx,errory);
end
Author: MichaelWin
Link: http://blogs.tcaue.cn/jacobi/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.